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This study was undertaken to investigate the relevance of using the pyrolysis-MS (Py-MS) technique
to discriminate the production area of oysters harvested over two years and to assess from the data
of the second year of harvest the potential of an alternative MS-based technique, the solid phase
microextraction-MS (SPME-MS), to perform this discrimination. Oysters were harvested in various
areas of France, and models of discrimination according to harvest season were built from Py-MS
fingerprints and from virtual SPME-MS fingerprints obtained by summing the mass spectra generated
by the SPME-GC-MS system. The treatment of the Py-MS data by a 21–12–3 artificial neural networks
led to a correct classification of only 89.2% of the oyster samples according to shoreline. The
misclassifications thus did not allow use of the Py-MS technique as a relevant tool for authentication
of oyster origin. The assessment of the potential of the virtual SPME-MS fingerprints to discriminate
the production area of oysters was undertaken on a part of the sample set. The virtual SPME-MS
data were pretreated according to two methods, filtering of raw data (FRD) and comprehensive
combinatory standard correction (CCSC), a recently developed chemometric method used for the
correction of instrumental signal drifts in MS systems. The results obtained with the virtual SPME-
MS fingerprints are promising because this technique, when the data were pretreated by the CCSC
method, led to a successful discrimination of the oyster samples not only according to shoreline but
also according to production region. This study confirms that an efficient correction method (CCSC)
of instrumental drifts can considerably increase the discriminative information contained in the volatile
fraction of food products.
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INTRODUCTION

The rapid worldwide intensification of the trade of raw or
processed food materials for human consumption has increased
health hazards and consequently consumer concern about the
origin and the conditions of production of foods. Seafoods such
as oysters can constitute a significant threat for the health of
the consumer, given the possible exposure of these food chains
to a wide spectrum of contaminants: pathogenic bacteria (1);
heavy metals such as arsenic and mercury (2, 3); and chemical
pollutants such as the polychlorinated biphenyls (PCBs), poly-
brominated diphenyl ethers (PBDEs), and organochlorine
pesticides (OCPs) (4). The certification of the geographical

origin of oysters is thus very important considering the safety
challenge, in particular when contaminated oysters from a
particular area must be withdrawn from the market, but also
considering the economic implications related to the influence
of the area of production on the sensory qualities of the oysters
(5) and thus to the protection of trademarks and the reputation
of oyster producers. Dégremont et al. (6) suggested that the
growth performances of oysters are mainly influenced by the
environmental conditions in the area of production. Moreover,
the climate and composition of plankton in the area of
production were shown to influence the composition of oyster
flesh (5, 7). The discrimination of oyster geographical origin
based on analysis of oyster composition could thus be envisaged.

The analytical methods used for the authentication of animal
products consist of either searching molecular constituents
revealing the origin of the product (8–11) or generating a
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fingerprint of the product and comparing this fingerprint with
those of reference products available in databases (12, 13). The
latter strategy is rapid, easy to carry out, and allows products
to be discriminated without a priori knowledge of the compo-
sitional differences between the products provided that the
databases used are time consistent and relevant to the authen-
tication question at issue.

Cardinal et al. (14) found the analysis by Curie-point
pyrolysis-mass spectrometry (Py-MS) of oyster flesh to be a
promising technique to identify rapidly the geographical origin
of oysters. In their work the processing of Py-MS fingerprints
by artificial neural networks (ANNs) allowed correct classifica-
tion of 89% of oyster samples collected over one year according
to production area. Another approach consisting of analyzing
the volatile fraction of oysters could be relevant to the
discrimination of their geographical origin. This approach was
already found to be promising for discriminating milk and
cheese according to their conditions of production (13, 15). The
solid phase microextraction-MS (SPME-MS) technique is
particularly suitable for analyzing the volatile fraction of oysters,
as it allows an efficient extraction of the volatile compounds at
a moderate temperature (16).

The aim of this work was to determine the relevance of using
the Py-MS technique to discriminate the geographical origin
of oysters harvested over a longer period of time (two years
instead of one year) and to assess the potential of another MS-
based technique, that is, virtual SPME-MS, to discriminate the
geographical origin of oysters using the data of the second year
of harvest.

MATERIALS AND METHODS

Materials. Oysters (Crassostrea gigas) were sampled in France from
sites of production distributed among seven production regions:
Normandy (NO), northern Brittany (NB) and southern Brittany (SB),
Bourgneuf Bay (BO), Marennes-Oléron Bay (MO), Arcachon Bay
(AR), and Thau Lagoon (TH). These regions could be grouped into
three major shorelines (14): the English Channel (NB, NO), the Atlantic
coast (SB, BO, MO, AR), and the Mediterranean coast (TH). The
harvest of oysters was carried out over four periods of the year, that is,
November-December (P1), March-April (P2), June (P3), and
September-October (P4), and during two campaign seasons, the first
(C1) in 2000–2001 (P1, P2, P3, P4) and the second (C2) in 2003–2004
(P1, P2, P3).

Sample Preparation. Sample Preparation for Py-MS Analysis.
Immediately after harvest, oysters were opened and their seawater
contents were removed. A mass of 100 g of fresh oyster flesh from
each site was ground using a model T25 Ultra-Turax homogenizer
(Janke and Kunkel, IKA Labortechnik) to obtain a representative
sampling of oyster flesh from each production site. The samples were
put in a polyethylene low-density bag protected from light by aluminum
foil and then stored at -80 °C. A mass of approximately 20 g of sample
was transferred into a 50 mL glass flask (VWR International France,
Fontenay-sous-bois, France), placed under nitrogen atmosphere, and
closed with a butyl-Teflon septum (VWR International France). The
sample was thawed at 4 °C overnight and then transferred into 29 ×
104 mm, 50 mL polycarbonate centrifuge bottles under nitrogen
atmosphere and closed with butyl-Teflon septum caps (Beckman
Instruments, Fullerton, CA). After a 50000g centrifugation for 20 min
at 4 °C, a volume of 1 mL of the aqueous phase was pipetted and
diluted with 7 mL of deionized water. This dilution step was necessary
to reduce the quantity of material analyzed and thus to minimize
pollution in the transfer area of the pyrolysis mass spectrometer and to
avoid a gradual loss of instrument sensitivity. The aqueous solutions
obtained were transferred into glass flasks and stored under nitrogen
atmosphere at -20 °C. One day before analysis, the aqueous solutions
were left to thaw at 4 °C. A volume of 2 µL from each solution was
pipetted, deposited on a clean iron-nickel foil (SS Scientific Ltd.,

Hellingly, U.K.), and dried at 150 °C for 7 min in an oven. Foils were
introduced into silica pyrolysis tubes (Ets. Maillères, Aubière, France)
as described by Berdagué et al. (17). A Viton O-ring was placed around
each tube for airtightness during pyrolysis. Three replicates were
performed for each sample.

Sample Preparation for Virtual SPME-MS Analysis. The oyster flesh
was ground as described above. A mass of approximately 3 g of sample
was transferred into a 10 mL vial (VWR International France), and
0.6 g of NaCl (Prolabo, Paris, France) was added to decrease the
solubility of the volatile substances in the oyster flesh sample and
therefore to increase their concentration in the headspace of the samples
(18). The vials were set under nitrogen atmosphere and sealed with
butyl-Teflon septum caps (VWR International France). The samples
were protected from light by aluminum foil and thawed at 4 °C
overnight prior to analysis.

Oyster Analysis. Py-MS Analysis. The pyrolysis mass spectrometer
used in this study was a Cp-Py-MS RaPyD 400 (Horizon Instruments
Ltd., Sussex, U.K.). The foil in the pyrolysis tube was heated at 530
°C for 3 s with a temperature rise time of 0.6 s chosen to provide a
balanced fragmentation of the carbohydrate, lipid, and protein fractions
(14). The pyrolysate then entered an expansion chamber heated at 160
°C and was diffused through a molecular beam tube to the ionization
chamber of the mass spectrometer. To minimize secondary fragmenta-
tion of the pyrolysate, low-voltage electron impact ionization (33.9 eV)
was used. Nonionized molecules were retained in a cold trap cooled
by liquid nitrogen. The ionized fragments were focused by the
electrostatic lens of a set of source electrodes, accelerated, and then
directed into the quadrupole mass analyzer. The mass spectrometer
scanned the ionized pyrolysate 65 times during pyrolysis. Data were
collected as 191 mass fragments over the range of m/z 50-240.

SPME-GC-MS Analysis and Construction of Corresponding Virtual
SPME-MS Fingerprints. (1) Addition of Standards to Oyster Samples.
As described previously by Deport et al. (19), three standards were
chosen to correct the instrumental signal drifts by applying the
comprehensive combinatory standard correction (CCSC) method to the
virtual SPME-MS data. The standards used were 1-bromobutane (S1;
purity ) 99.7%; retention index ) 729), bromobenzene (S2; purity )
99.5%; retention index ) 940), and 1-fluoronaphthalene (S3; purity )
99.0%; retention index ) 1207) (Sigma Aldrich Chimie, St-Quentin-
Fallavier, France). The retention indices of these standards were
distributed evenly over the sample GC chromatograms. They were
added in the salt-ground oyster mix to obtain a final concentration of
approximately 0.1 ppm for each standard. Then the vials were sealed
with butyl-Teflon septum caps, protected from light by aluminum foil,
and kept at 4 °C overnight.
(2) Analysis Parameters. The samples kept at 4 °C were installed on
a Peltier tray cooler (Gerstel, Mülheim an der Ruhr, Germany) set at
6 °C. The extraction of volatile compounds was carried out using a
model MPS2 multipurpose sampler (GERSTEL, Baltimore, MD), which
managed the following steps: preheating of the sample during 45 min
at 40 °C in the stirrer (500 rpm), trapping of the volatile compounds
of the headspace during 60 min at 40 °C with a 75 µm carboxen/
polydimethylsiloxane SPME fiber for Merlin Microseal (Supelco,
Bellefonte, PA), and thermic desorption of the trapped volatile
compounds by introduction of the fiber in the GC injector. The
compounds condensed at the head of the column were analyzed by a
model 6890 GC (Hewlett-Packard, Avondale, PA) after the interface
had been heated for 2 min at 280 °C and automatic splitless injection
onto a 60 m × 0.32 mm i.d., 1 µm, SPB5 capillary column (Sigma
Aldrich, St. Louis, MO). The oven temperature was successively held
at 40 °C for 5 min, increased to 190 °C at a gradient of 3 °C min-1,
and further increased to 230 °C for 2 min according to a gradient of
10 °C min-1. The GC column was connected to a model 5973A mass
spectrometer (Hewlett-Packard). The temperature of the column in
the transfer section between the GC oven and MS source was 280 °C.
The temperature was fixed at 180 °C in the MS source and at 150 °C
in the MS quadrupole. The electron impact energy was set at 70 eV,
and data were collected in the range of m/z 33-230 at a scan range of
1.68 scan s-1.

The principle of the construction of virtual SPME-MS fingerprints
of the volatile fraction is shown in Figure 1: the mass spectra, which
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were acquired every 150 ms of the SPME-GC-MS chromatogram, were
summed, resulting in a virtual SPME-MS fingerprint characterized by
the abundance of 198 summed mass fragments ranging from m/z 33 to
230.

Data Treatment. Data were processed using the Statistica Neural
Networks Software release 6.1 package (Statsoft, Maisons-Alfort,
France).

Py-MS Data. (1) Data Set. Discrimination of the oyster production
area was carried out on the two data sets of the Py-MS fingerprints of
the oysters collected on the three shorelines during the C1 and C2
harvest campaigns: C1 ) [471 mass spectra × 191 mass fragments],
the 471 mass spectra originating from 157 oyster samples × 3 replicates;
and C2 ) [255 mass spectra × 191 mass fragments], the 255 mass
spectra originating from 85 oyster samples × 3 replicates.

(2) Data Pretreatment. (a) Filtering of the Instrumental Noise. A
mass fragment was considered to bring information and preserved for
further treatment when the average abundance (calculated from C1 and
C2 data matrices)/noise level ratio was greater than 2 (20).

(b) Median Filtering of Replicates. The median abundance of each mass
fragment standing out from the background noise was selected from
the three replicates to obtain one median mass spectrum for each oyster
sample (12).
(c) Normalization of Data. The abundance of the selected fragments
was then corrected by internal normalization consisting of the expression
of each mass fragment abundance as a percentage of the sum of all
mass fragment abundances.
(d) Filtering of Mass Spectra. Principal component analysis (PCA) was
carried out on the filtered and normalized data sets for the C1 and C2
campaigns to visualize the structure of the data and to remove outlying
samples.
(e) Merging of the Two Data Sets. To correct the drifts of analytical
system occurring during and between the analyses of the C1 and C2
samples (21, 22), a factor was applied to each mass fragment Fi of the
C2 data set:

Fi,C2,corrected )Fi,C2,noncorrected ×
F̄i,C1,noncorrected

F̄i,C2,noncorrected

where Fi,C1 and Fi,C2 are the mass fragments from C1 and C2 data
matrices, respectively, and Fj i,C1 and Fj i,C2 are the averages of the
abundances of the mass fragments from C1 and C2 data matrices,
respectively.

Then data from the two matrices were pooled into a single matrix
containing all of the normalized mass fragments of the oyster samples.
Principal component analyses were carried out on the pooled raw data
and on the pooled corrected data to visualize the signal drift
correction.

(3) Discrimination of Production Area. (a) Classification by Dis-
criminant Analysis (DA). The selection of the relevant mass fragments
from the compiled matrix for the discrimination of production area
within each harvest period was performed by DA according to a
stepwise algorithm (stepwise algorithm with p inclusion and p exclusion
values of <0.05). The maximum number of discriminative mass
fragments retained for computing each discriminant model within period
was at maximum equal to the number of samples divided by 10.
(b) Classification by Artificial Neural Network (ANN). A three-layer
network architecture was chosen to classify the oysters according to
production area because of its ability to model most functions and to
solve complex nonlinear problems (23). Network training was per-
formed with the “standard back-propagation” algorithm (24). Learning,
validation, and test were performed using 108, 53, and 53 samples,
respectively. The oyster samples were distributed in each data set in a
balanced way according to the two harvest campaigns, the four harvest
periods, and the geographical origins. The computations of the network
during the cross-validation steps were stopped when the validation error
stopped decreasing (24).

Virtual SPME-MS Data. Data Set. The potential of the virtual
SPME-MS method to discriminate oyster production area was evaluated
with part of the oysters collected during the C2 harvest campaign. Three
oyster samples from three production sites per production region were
analyzed for each of the three harvest periods, and only two oyster
samples from two sites in the Thau Lagoon were studied during period
2 of C2. Sixty-two samples were analyzed by virtual SPME-MS.

Filtering of Raw Data (FRD). The raw data were filtered by one-
way analysis of variance (ANOVA) at the 5% level of significance
(model: abundance of mass fragment ) production area).

Pretreatment of Raw Data. Pretreatment of virtual fingerprints by
comprehensive combinatory standard correction (CCSC) was compared
to FRD to assess its ability to correct the raw data for the influence of
the instrumental drifts: the mixture of three selected internal standards
being analyzed together with the oyster sample, the abundance of each
mass fragment normalized by the sum of the abundances of specific
ion of standards, selected among the Σp)1

3 C3
p possible sums, where p

represents the number of standards involved in a given sum, that enabled
the best product discrimination (19). The specific ion abundance of
the standards used in the CCSC corrections of virtual SPME-MS
fingerprints was quantified on the basis of the abundance of the standard
specific ion quantified in SPME-GC-MS. Finally, a one-way ANOVA
(model: CCSC pretreated abundance ) production area, p < 0.05) was

Figure 1. Scheme of the construction of a virtual MS fingerprint of an
oyster sample from a GC-MS chromatogram of this tissue. The mass
spectra, which were acquired every 150 ms of the GC-MS chromatogram,
were summed and then converted in a MS fingerprint characterized by
the abundance of 198 mass fragments ranging from m/z 33 to 230.
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processed for each mass fragment to select the discriminative corrected
abundances. When several corrected abundances were significant for
the same mass fragment, the combination of standards with the highest
Fisher’s F value was selected.

Discrimination of Production Area. DA was carried out on both
FRD and CCSC pretreated data within each harvest period to
discriminate oysters according to their production area (shoreline
or region). The discriminant analyses were processed with a best
subset algorithm. The classification models of oysters according to
their production area were built for each data set. The number of
discriminant variables in the models were set as the lowest number
of discriminative fragments giving 100% of well-classified samples
on the FRD or CCSC data set.

RESULTS AND DISCUSSION

Discrimination of Production Area by Py-MS. Py-MS Data
Pretreatment. The different steps of the Py-MS data pretreatment
are illustrated in Figure 2. After the noise-filtering step, 97 mass
fragments were selected for further processing. The median
filtering of the replicates used to stabilize the variance of the
data produced two new data matrices with 157 and 85 samples
for oysters collected during the C1 and C2 harvest campaigns,
respectively. The abundance of the mass fragments selected by
median filtering was processed by internal normalization to
correct the intensity of the Py-MS signal for the variations in
the oyster sample mass analyzed. This step led to a better
distribution of sample plots along the PCA first map and allowed

the aberrant samples in the data sets to be highlighted. As
suggested by Sebastián et al. (12), the presence of aberrant
samples can be explained by fluctuations in the quality of the
vacuum in the MS source, by pollution in the transfer lines and/
or source, and by the aging of the electron multiplier. Finally,
12 and 16 samples from the C1 and C2 harvest campaigns,
respectively, were eliminated, leading to two new data sets with
145 and 69 samples, respectively. After the two data matrices
had been merged into a single [97 × 214] matrix, the PCA first
map clearly showed two groups of samples matching the two
harvest seasons (Figure 3A). The differences observed between
the two groups could be explained by variations in environ-
mental conditions (streams, climate) between the two harvest
seasons, which could have influenced the type of plankton
consumed by the oysters and consequently their flesh composi-
tion (6, 7), and by an instrumental drift of the analytical system
between the two analytical campaigns (21, 22). In Figure 3A,
the between-campaign drift was directed mainly according to
the first principal component, and it justified the linear correction
applied to the data to merge both groups. Figure 3B shows

Figure 2. Data pretreatment steps of the Py-MS fingerprints of the oysters
collected during two harvest campaigns, the first one (C1) in 2000–2001
and the second one (C2) in 2003–2004. Data matrices [i × j] obtained
after each pretreatment step included the number of mass fragments (i)
and the number of mass spectra (j), which originated from the number of
oyster samples × 3 replicates.

Figure 3. Normed PCAs carried out on the compiled matrix [97 × 214]
resulting from the merging of the pretreated C1 and C2 data sets (A)
without fingerprint correction of the between-campaign differences and
(B) with correction of the between-campaign differences by the factor
Fi,C2,corrected ) FiC2,noncorrected × (F̄i,C1,noncorrected/F̄i,C2,noncorrected), where Fi,C1

and Fi,C2 are the mass fragments from C1 and C2 data matrices,
respectively, and F̄i,C1 and F̄i,C2 are the averages of the abundances of
the mass fragments from C1 and C2 data matrices, respectively. Samples
with the number 1 belong to the C1 data set, and samples with the number
2 belong to the C2 data set.

324 J. Agric. Food Chem., Vol. 56, No. 2, 2008 Ratel et al.



that after the correction applied to each mass fragment of the
C2 campaign data matrix, the two groups of plots corresponding
to the two harvest campaigns fully overlapped in the PCA first
map, suggesting that the between-campaign drift was mainly
the result of instrumental drifts.

Discrimination of Production Area. DAs performed on data
sets corresponding to the four harvest periods enabled between
88.3 and 96.7% of the oyster samples go be classified according
to shoreline (Table 1). The lowest model performance was
obtained on period P1, whereas seven discriminative mass
fragments were entered in the model. The relatively poor
performance of the linear model used for the discrimination is
consistent with previous results suggesting the use of ANNs
for discriminations based on Py-MS data (12, 14, 25, 26). With
the ANNs, production area, harvest season, and their interactions
were taken into account in a single model. The 17 different
discriminative mass fragments retained by the stepwise algo-
rithm in the DA models (Table 1) were used in the ANNs to
limit the number of input variables and to prevent the data from

overfitting during ANN training. The network consisted of three
layers containing 21 inputs (the 17 mass fragments selected by
DAs and the 4 harvest periods), one hidden layer containing 3
outputs (the 3 shorelines), and 12 nodes, corresponding to
network architecture of the type 21–12–3. The discrimination
model enabled correct classification of 89.2% of the oyster
samples according to shoreline, showing that the cause of
misclassification was not only the type of data treatment but
could also be the use of the Py-MS technique. These misclas-
sifications could result from an insufficient capacity of Py-MS
to reveal differences between composition of oysters (14). Also,
the preprocessing of Py-MS data was perhaps insufficient to
correct the instrumental drifts, which are known to affect the
reproducibility of the Py-MS systems (21, 22) and to mask part
of the discriminative information (19).

Discrimination of Production Area by Virtual SPME-MS.
Only the mass fragments from virtual SPME-MS fingerprints
for which abundance was significantly influenced by the
shoreline factor (p < 0.05) after FRD pretreatment were selected
for each of the three harvest periods studied (Table 2). The
classification models built from these discriminative mass
fragments allowed correct classification of 90.5, 100, and 85.7%
of the samples in periods 1, 2, and 3, respectively. The
classification errors could be explained by insufficient sensitivity
of the virtual SPME-MS system with respect to the differences
in composition between oysters of different origins or instru-
mental drifts in the SPME-GC-MS system. To correct these
instrumental drifts, which may be gradual or sudden, linear or
nonlinear, and generally difficult to predict, particularly when
they occur simultaneously (27), the virtual SPME-MS data were
processed by the CCSC method developed by Deport et al. (19).
It revealed 2.9, 1.4, and 12.1 times more discriminative mass
fragments from the virtual SPME-MS data than did the FRD
pretreatment for periods 1, 2, and 3, respectively (Table 2).
Additionally, the corresponding discriminative models allowed
100% correct within-harvest period classifications of oyster
samples according to shoreline using only three or four

Table 1. Oyster Discrimination According to Their Shoreline of Production
Obtained by Discriminant Analysis Processed on the Pretreated Py-MS
Fingerprints

discrimination of shoreline of productiona

harvesting
periodb

oyster
samples

no. of
discriminative

mass fragment
(p < 0.05)

mass fragments
selected for

modelization (m/z)

model
performance
(% of well-

classified samples)

P1 81 7 53/66/67/72/78/80/93 88.3
P2 51 4 58/72/74/79 93.8
P3 52 5 59/65/72/84/94 94.1
P4 30 3 57/75/82 96.7

a Oyster samples were grouped in three shorelines of production: the English
Channel, the Atlantic coast, and the Mediterranean coast. b Oyster samples analyzed
by Py-MS were collected during two seasons (2000–2001 and 2003–2004) and
four annual periods: November–December (P1), March–April (P2), June (P3), and
September–October (P4).

Table 2. Oyster Discrimination According to Their Shoreline and Their Region of Production Obtained by Discriminant Analysis Processed on the Pretreated
Virtual SPME-MS Fingerprints

discrimination of production area

filtering of MS data model performance

harvesting
perioda

oyster
samples

data set
pretreatment

no. of discriminative
mass fragment

(p < 0.05)

% of
well-classified

samples

no. of
mass

fragments
mass fragments selected for

discrimination (m/z)

shoreline of
productionb

P1 21 FRDc 26 90.5 3 41/49/55

CCSCd 75 100 3 114 S3e/247 S2S3/49 S3
P2 21 FRD 16 100 4 35/73/232/180

CCSC 22 100 4 35 S1/150 S3/134 S3/137 S3
P3 20 FRD 10 85.7 3 144/157/158

CCSC 121 100 3 98 S2/95 S2/162 S2S3

region of
productionf

P1 21 FRDc 11 85.3 5 169/102/64/61/35

CCSCd 24 100 5 101 S3e/114 S3/169 S1/73 S3/195 S2S3
P2 21 FRD 16 100 4 183/73/149/161

CCSC 15 100 4 161 S3/182 S3/ 243 S2/47 S1S3
P3 20 FRD 23 95.2 4 172/138/61/144

CCSC 87 100 4 102 S2/182 S3/189 S3/237 S2S3

a Oyster samples analyzed by virtual SPME-MS were collected during three annual periods: November–December (P1), March–April (P2), and June (P3). b Oyster
samples were grouped in three shorelines of production: the English Channel, the Atlantic coast, and the Mediterranean coast. c FRD, filtering of raw data. d CCSC,
comprehensive combinatory standard correction. e Best standard or combination of standards used to correct each fragment abundance with the CCSC: S1, 1-bromobutane;
S2, fluorobenzene; S3, 1-fluoronaphthalene. f Oyster samples originated from seven regions of production: Normandy (NO), northern Brittany (NB), southern Brittany (SB),
Bourgneuf Bay (BO), Marennes-Oléron Bay (MO), Arcachon Bay (AR), and Thau Lagoon (TH).
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discriminative mass fragments (Table 2). This result confirms
that, by reducing the effect of instrumental drifts, the CCSC
preprocessing method increases both the number and the
discriminative power of markers of product differentiation and
therefore the efficiency of the method to extract useful informa-
tion from stabilized MS databases (19, 28).

The discrimination of shorelines having been successful after
CCSC pretreatment of virtual SPME-MS data, the discrimination
of oyster origin at a smaller geographical scale (production
region) was undertaken. The CCSC revealed 2.2 and 3.8 times
more mass fragments discriminating the production region than
did FRD pretreatment in periods 1 and 3, respectively (Table
2). The CCSC did not improve the number of discriminative
mass fragments in period 2, probably because the origin-related
compositional differences between oysters were large enough
to be revealed by FRD pretreatment. The corresponding
discriminative models built after CCSC pretreatment allowed a
100% correct within-harvest-period classification of oyster
samples according to production region using only four or five
discriminative masses (Table 2). In contrast with previous
results obtained by Cardinal et al. (14) with the Py-MS
technique, 100% of the oysters collected over one year of harvest
were correctly classified by virtual SPME-MS according to their
production area, showing that this technique is a promising tool
for authentication. Further investigation is needed to validate
the discriminative potential of the virtual SPME-MS fingerprints
coupled with CCSC data pretreatment for the discrimination of
geographical origin on a broader range of oyster samples,
origins, and harvest campaigns.

The Py-MS technique led to an unsuccessful discrimination
of the oyster samples according to their production area even
at the largest geographical scale studied. The results of the
discrimination of the production area using virtual SPME-MS
data, here generated by a SPME-GC-MS system, are promising
because this technique could classify correctly the oyster samples
according to shoreline and also production region within each
harvesting period, when the virtual SPME-MS data were
pretreated by the CCSC method. The virtual SPME-MS
technique has several advantages compared to the Py-MS for
the discrimination of the geographical origin of oysters. First,
it gives access to the information related to the volatile fraction
of animal products, which depends directly upon the modifica-
tions of the animal metabolism induced by the environmental
conditions. Second, it did not require any prior preparation of
the sample before analysis. Third, it allows using the CCSC
method for the correction of analytical instrumental drifts and
then revealing the discriminative information contained in the
volatile fraction of food products. Indeed, the temperature
applied to the sample during the Py-MS analysis makes
impossible the use of heat labile standards required by the CCSC
method. Fourth, the SPME-GC-MS analysis allows additionally
the use of the information supplied by the GC separation and
thus may explain the molecular origin of the compositional
differences observed between oysters from different production
areas.

A collection of data of plankton composition and environ-
mental conditions has been undertaken to increase the informa-
tion from virtual SPME-MS data and thus to improve the
robustness of this technique for the discrimination of oyster
origin. The identification of molecular markers of geographical
origin from the SPME-GC-MS signal is also being investigated.
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